Let x0 be the point of Local maxima of f(x)=→a⋅(→b×→c), where →a=x^i−2^j+3^k,→b=−2^i+x^j−^k and →c=7^i−2^j+x^k. Then the value of →a⋅→b+→b⋅→c+→c⋅→a at x=x0 is
A
−22
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
−4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
−30
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
14
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A−22 f(x)=→a.→b×→c ⇒f(x)=∣∣
∣∣x−23−2x−17−2x∣∣
∣∣ ⇒f(x)=x(x2−2)+2(−2x+7)+3(4−7x) ⇒f(x)=x3−2x−4x+14+12−21x ⇒f(x)=x3−27x+26 f′(x)=3x2−27=0⇒x=±3 f′′(x)=6x
At x=3⇒f′′(3)=18>0
At x=−3⇒f′′(−3)=−18<0 ∴ Local maxima at x=x0=−3
Thus, →a=−3^i−2^j+3^k →b=−2^i−3^j−^k →c=7^i−2^j−3^k
Now, →a⋅→b+→b⋅→c+→c⋅→a =(6+6−3)+(−14+6+3)+(−21+4−9) =9−5−26 =−22