Byju's Answer
Standard XII
Mathematics
Quadratic Equation
Let x0, y0 ...
Question
Let
(
x
0
,
y
0
)
be the solution of the following equations:
(
2
x
)
ln
2
=
(
3
y
)
ln
3
3
ln
x
=
2
ln
y
Then
x
0
is
Open in App
Solution
Given equations are
(
2
x
)
ln
2
=
(
3
y
)
ln
3
(
ln
2
)
ln
2
x
=
(
ln
3
)
ln
3
y
⟹
(
ln
2
)
2
+
(
ln
2
)
(
ln
x
)
=
(
ln
3
)
2
+
(
ln
3
)
(
ln
y
)
and also,
3
ln
x
=
2
ln
y
⟹
ln
x
ln
y
=
ln
2
ln
3
⟹
ln
y
=
ln
3
ln
2
.
ln
x
,
substituting this in the first equation gives,
(
ln
2
)
2
+
(
ln
2
)
(
ln
x
)
=
(
ln
3
)
2
+
(
ln
3
)
(
ln
3
ln
2
.
ln
x
)
⟹
(
ln
2
)
3
+
(
ln
2
)
2
(
ln
x
)
=
(
ln
3
)
2
+
(
ln
3
)
2
.
ln
x
⟹
ln
x
=
(
ln
2
)
3
−
(
ln
3
)
2
(
ln
3
)
2
−
(
ln
2
)
2
⟹
x
0
=
e
(
ln
2
)
3
−
(
ln
3
)
2
(
ln
3
)
2
−
(
ln
2
)
2
Suggest Corrections
0
Similar questions
Q.
Let
(
x
0
,
y
0
)
be thhe solution of the following equations
(
2
x
)
l
n
2
=
(
3
y
)
l
n
3
and
3
l
n
3
and
3
l
n
x
=
2
l
n
y
. Then
x
y
=
Q.
If
(
2
x
)
ln
2
=
(
3
y
)
ln
3
,
3
ln
x
=
2
ln
y
and
(
x
0
,
y
0
)
is the solution of these equations, then
x
0
is
Q.
Let
(
x
0
,
y
0
)
be the solution of the following equations
(
2
x
)
l
n
2
=
(
3
y
)
l
n
3
,
3
l
n
x
=
2
l
n
y
then
x
0
is
Q.
Find the value of x if
(
2
x
)
l
n
2
=
(
3
y
)
l
n
3
and
3
l
n
x
=
2
l
n
y
.
log
e
x
can also be written as ln(x)
__
Q.
Let
x
0
,
y
0
be fixed real numbers such that
x
2
0
+
y
2
0
>
1
. If
x
,
y
are arbitrary real numbers such that
x
2
+
y
2
≤
1
, then the minimum value of
(
x
–
x
0
)
2
+
(
y
–
y
0
)
2
is
View More
Related Videos
Introduction
MATHEMATICS
Watch in App
Explore more
Quadratic Equation
Standard XII Mathematics
Solve
Textbooks
Question Papers
Install app