Let, X=1+3a+6a2+10a3+....,|a|<1 y=1+4b+10b2+20b3+....,|b|<1 Find S = 1 + 3 (ab) + 5 (ab)^2 + ....... in terms of x and y
Open in App
Solution
x = 1 + 3a + 6a2 + 10a3 + ... ∴ ax = a + 3a2 + 6a3 + ... ∴ x(1 - a) = 1 + 2a + 3a2 + 4a3 + ... above is A.G.S. whose S∞=A1−R+dR(1−R)2 ∴x(1−a)=1(1−a)3+a(1−a)2+1(1−a)2 ∴x=1(1−a)3 ∴(a−a)3=x−1 or a = 1 - x−1/4 ∴S=11−ab+2ab(1−ab)2, as above for A.G.S. =1+ab(1−ab)2. Now put the value of a and b from above in terms of x and y.