x1=11⋅3+13⋅5+15⋅7+⋯ upto 10 terms
Let tr be the rth term of the given series.
Then tr=1(2r−1)(2r+1),r=1,2,3⋯n
tr=12[12r−1−12r+1]
∴Sn=n∑r=1tr
⇒Sn=12[(1−13)+(13−15)+⋯(12n−1−12n+1)]
Sn=12[1−12n+1]
∴S10=1021=x1
and y1=71=7
For point to be internal to hyperbola S1>0 ,
where S::−(21x)2100+y2(7b)2−1
⇒−(21×1021)2100+4949b2−1>0
⇒2−1b2<0
⇒2b2−1<0
⇒b∈(−1√2,1√2)
But for b=0 equation will not valid
∴b∈(−1√2,1√2)−{0}
So, number of integers lying in the interval =0