Let X1, X2 and X3 be independent and identically distributed random variables with the uniform distribution on [0, 1]. The probability P(X1+X2≤X3) is the largest} is
The probability density function of a uniform distribution function on [a, b] is
f(x)=(1(b−a),a≤x≤b0,otherwise
=(1,0≤x≤10,otherwise
E(x1)=a+b2=E(X2)=E(x3)=12
V(x1)=(b−a)212=112=V(x2)=v(x3)
Let u=x1+x2−x3
μ=E(u)=E(x1+x2−x3)
=12+12−12=12
Var(u)=Var(x1+x2−x2)
=Var(x1)+Var(x2)+Var(x3)+0
=112+112+112=14
So SD, σu=12
So Zu=u−μσu=0−1212=−1
Hence
P(x1+x2≤x3)=P(x1+x2−x3≤0)
=P(u≤0)
=P(zu≤−1)
=P(zu≥1)
(using symmetry of Gaussian Variable)
=12−P(0<z<1)
= 0.5 - 0.3413
= 0.1587