Let x1,x2,x3,x4 be four non-zero numbers satisfying the equation tan−1(ax)+tan−1(bx)+tan−1(cx)+tan−1(dx)=π2, then which of the following relation hold(s) good?
∑4i=1(1xi)=0
(x1+x2+x3)(x2+x3+x4)(x3+x4+x1)(x4+x1+x2)=abcd
Let tan−1(ax)=α⇒tan α=ax and so on.
⇒tan(α+β+γ+δ)=tan(π2)
⇒S1−S31−S2+S4=∞⇒1−S2+S4=0⇒S4−S2+1=0
Now, S4=(tan α)(tan β)(tan γ)(tan δ)=abcdx4
S2=∑(tan α tan β)=∑(abx2)
∴abcdx4−∑abx2+1=0
⇒x4−∑(ab)x2+abcd=0
Its roots are x1,x2,x3,x4.
∴x1+x2+x3+x4=0 ....(1)
∑(x1x2x3)=x1x2x3x4[1x1+1x2+1x3+1x4]=0
Also, x1x2x3x4=abcd.
(x1+x2+x3)(x2+x3+x4)(x3+x4+x1)(x4+x1+x2)=(∑xi−x1)(∑xi−x2)(∑xi−x3)(∑xi−x4)=x1x2x3x4=abcd