Let x2≠nπ−1,nϵN. Then, the value of ∫x√2sin(x2+1)−sin2(x2+1)2sin(x2+1)+sin2(x2+1)dx is equal to
A
log|12sec(x2+1)|+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
log|sec(x2+12)|+C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
12log|sec(x2+1)|+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Blog|sec(x2+12)|+C We have, ∫x√2sin(x2+1)−sin2(x2+1)2sin(x2+1)+sin2(x2+1)dx=∫x√2sin(x2+1)−2sin(x2+1)cos(x2+1)2sin(x2+1)+2sin(x2+1)cos(x2+1)dx=∫x√1−cos(x2+1)1+cos(x2+1)dx=∫xtan(x2+12)dx=∫tan(x2+12)d(x2+12)=log|sec(x2+12)|+C