Let X and Y be two arbitary, 3 × 3 non – zero, skew – symmetric matrices and Z be an arbitary, 3 × 3 non zero, symmetric matrix. Then, which of the following matrices is/are skew-symmetric?
A
Y3Z4−Z4Y3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
X44+Y44
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
X4Z3−Z3X4
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
X23+Y23
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is DX23+Y23 Given XT=−X,YT=−Y,ZT=Z
(a) Let P=Y3Z4−Z4Y3
Then, PT=(Y3Z4)T−(Z4Y3)T =(ZT)4(YT)3−(YT)3(ZT)4 =−Z4Y3+Y3Z4=P ∴ P is symmetric matrix.
(b) Let P=X44+Y44
Then, PT=(XT)44+(YT)44 =X44+Y44=P ∴ P is symmetric matrix.
(c) Let P=X4Z3−Z3X4∴PT=(X4Z3)T−(Z3X4)T=(ZT)3(XT)4−(XT)4(ZT)3=Z3X4−X4Z3=−P ∴ P is skew - symmetric matrix.
(d) Let P=X23+Y23
Then, PT=(XT)23+(YT)23=−X23−Y23=−P ∴ P is skew - symmetric matrix.