Let X and Y be two arbitrary, 3×3, non-zero, skew symmetric matrices and Z be an arbitrary 3×3, non-zero, symmetric matrix. Then which of the following matrices is (are) skew symmetric?
A
Y3Z4−Z4Y3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
X44+Y44
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
X4Z3−Z3X4
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
X23+Y23
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is DX23+Y23 Given that XT=−X,YT=−Y,ZT=Z
LetP=Y3Z4−Z4Y3PT=(Y3Z4−Z4Y3)T=(ZT)4(YT)3−(YT)3(ZT)4=(Z)4(−Y)3−(−Y)3(Z)4=P ⇒P is a symmetric matrix.
LetQ=X44+Y44QT=(X44+Y44)T=(XT)44+(YT)44=X44+Y44=Q ⇒Q is a symmetric matrix.
Let R=X4Z3−Z3X4RT=(X4Z3−Z3X4)T=(ZT)3(XT)4−(XT)4(ZT)3=(Z)3(−X)4−(−X)4(Z)3=−R ⇒R is a skew symmetric matrix.
LetS=X23+Y23ST=(X23+Y23)T=(−X)23+(−Y)23=−S ⇒S is a skew symmetric matrix.