Let X and Y be two arbitrary, 3×3, non-zero, skew-symmetric matrices and Z be an arbitrary 3×3, non-zero, symmetric matrix. Then which of the following matrices is (are) skew symmetric?
A
Y3Z4−Z4Y3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
X44+Y44
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
X4Z3−Z3X4
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
X23+Y23
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct options are CX4Z3−Z3X4 DX23+Y23 Given: XT=−X,YT=−Y and ZT=Z Using Properties of transpose: (A+B)T=AT+BT and (AB)T=BTAT Option A: (Y3Z4−Z4Y3)T=(Y3Z4)T−(Z4Y3)T ⇒(Z4)T(Y3)T−(Y3)T(Z4)T=(ZT)4(YT)3−(YT)3(ZT)4=Y3Z4−Z4Y3 Its a symmetric. Option B: (X44+Y44)T=(XT)44+(YT)44=X44+Y44 Its a symmetric. Option C: (X4Z3−Z3X4)T=(X4Z3)T−(Z3X4)T ⇒(Z3)T(X4)T−(X4)T(Z3)T=(ZT)3(XT)4−(XT)4(ZT)3=Z3X4−X4Z3=−(X4Z3−Z3X4) Its a skew symmetric. Option D: (X23+Y23)T=(XT)23+(YT)23=−(X23+Y23) Its a skew symmetric. Hence, option C,D.