wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let (x) be a function such that limx0f(x)x=1andiflimx0x(1+acosx)bsinx(f(x)3)=1then(a+b)=_____________

Open in App
Solution

L=limx0x+cos2xbsinxx3
Apply L Rule then,
limx01+acosasinxbcosxx3
1+ab=0 in LR(1)
limx0acosxacosxacos2x+axsinx+bcosx6 (By L orbital Rule)
=1 3a+b=6(II)
Hence, equation (I) & (II)
1+ab=03a+b=612a=62a=5a=52
1+(52)+b=0 152+b=0
252+b=0 32+b=0 b=32
Now a+b=52+32=22=1
a+b=1


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Direction Cosines and Direction Ratios
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon