The correct option is C 1>b=d>c
We have,
tan−1(x−1)+tan−1(x+1)=tan−1 3x−tan−1x
Applying tangent on both sides,
⇒x−1+x+11−(x2−1)=3x−x1+3x2⇒2x2−x2=2x1+3x2⇒2x(4x2−1)=0∴x=0,±12
Checking all the values of x in the given equation.
All values satisfies it.
Comparing x3+bx2+cx+d=0 with 8x3−2x=0, we get
b=d=0c=−14
Checking the given options, we get
1+4c=0=b+db+c+d=−141>b=d>cb2+c2+d2≠4