The correct option is D x=2
f(x)=xcos(π(x+[x]))
At x=0,
L.H.L.=f(0−)=0R.H.L.=f(0+)=0
So, f(x) is continuous at x=0
At x=1,
L.H.L.=f(1−)=1cos(π(1+0))=−1R.H.L.=f(1+)=1cos(π(1+1))=1
So, f(x) is discontinuous at x=1
At x=−1,
L.H.L.=f(−1−)=1
R.H.L.=f(−1+)=−1
So, f(x) is discontinuous at x=−1
At x=2,
L.H.L.=f(2−)=−2
R.H.L.=f(2+)=2
So, f(x) is discontinuous at x=2