The correct option is D Does not exist
{x}=x−[x] and 0≤{x}<1
limx→0+{x}tan{x}=limx→0+x−[x]tan(x−[x])
limx→0+xtanx=limx→0+1sec2x=1
[ use L-Hospital rule]
limx→0−{x}tan{x}=limx→0−x−[x]tan(x−[x])
=limx→0−x−[−1]tan(x−[−1])
=limx→0−x+1tan(x+1)
=1tan1
∵limx→0+{x}tan{x}≠limx→0−{x}tan{x}
So, limx→0{x}tan{x} does not exist.