Let [x] denote the greatest integer less than or equal to x. If for n∈N,(1–x+x3)n=∑j=03najxj,then∑j=03n2a2j+4∑j=03n-12a2j+1=
1
n
2n-1
2
It is given that:
(1–x+x3)n=∑j=03najxj=a0+a1x+a2x2+.......a3nx3n
Put x=1, we get:
1=a0+a1+a2....+a3n(1)
On putting x=-1, we get:
1=a0-a1+a2....(-1)3na3n(2)
Now, (1)+(2)
a0+a2+a4+a6.....=1
And, (1)-(2)
a1+a3+a5+a7.....=0
On calculating:
∑j=03n2a2j+4∑j=03n-12a2j+1=a0+a2+a4....+4a0+a1+a3....=1+4(0)=1
Hence, option A is the correct answer.