Let [x] denote the largest integer not exceeding x and {x}=x−[x]. Then
∫20120ecos(π{x})ecos(π{x})+e−cos(π{x})dx is equal to.
I=∫20120ecos(π{x})ecos(π{x})+e−cos(π{x})
{x} is periodic with period T=1
Using the property ∫nT0f(x)dx=n∫T0f(x)dx
I=2012∫10ecos(π{x})ecos(π{x})+e−cos(π{x})dx
For x∈(0,1){x}=x
∴I=2012∫10ecos(πx)ecos(πx)+e−cos(πx)dx.......(i)
I=2012∫10ecos(π(1−x))ecos(π(1−x))+e−cos(π(1−x))dx ........ [Using a+b−x property of integral]
I=2012∫10e−cos(πx)ecos(πx)+e−cos(πx)dx...(ii)
Adding (i) and (ii)
2I=2012∫101dxI=1006(1)=1006
Hence, option B is correct.