When two fair dice are rolled, 6×6=36 observations are obtained.
P(X=2)=P(1,1)=136
P(X=3)=P(1,2)+P(2,1)=236=118
P(X=4)=P(1,3)+P(2,2)+P(3,1)=336=112
P(X=5)=P(1,4)+P(2,3)+P(3,2)+P(4,1)=436=19
P(X=6)=P(1,5)+P(2,4)+P(3,3)+P(4,2)+P(5,1)=536
P(X=7)=P(1,6)+P(2,5)+P(3,4)+P(4,3)+P(5,2)+P(6,1)=636=16
P(X=8)=P(2,6)+P(3,5)+P(4,4)+P(5,3)+P(6,2)=536
P(X=9)=P(3,6)+P(4,5)+P(5,4)+P(6,3)=436=19
P(X=10)=P(4,6)+P(5,5)+P(6,4)=336=112
P(X=11)=P(5,6)+P(6,5)=236=118
P(X=12)=P(6,6)=136
Therefore, the required probability distribution is as follows.
Then, E(X)=∑Xi⋅P(Xi)
=2×136+3×118+4×112+5×19+6×536+7×16+8×536+9×19+10×112+11×118+12×136
=118+16+13+59+56+76+109+1+56+1118+13
=7
E(X2)=∑X2i⋅P(Xi)
=4×136+9×118+16×112+25×19+36×536+49×16+64×536+81×19+100×112+121×118+144×136
=19+12+43+259+5+496+809+9+253+12118+4
=98718=3296=54.833
Then, Var(X)=E(X2)−[E(X)]2
=54.833−(7)2
=54.833−49
=5.833
∴ Standard deviation =√Var(X)
=√5.833
=2.415