wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let X denote the sum of the numbers obtained when two fair dice are rolled. Find the variance and standard deviation of X.

Open in App
Solution

When two fair dice are rolled, 6×6=36 observations are obtained.
P(X=2)=P(1,1)=136
P(X=3)=P(1,2)+P(2,1)=236=118
P(X=4)=P(1,3)+P(2,2)+P(3,1)=336=112
P(X=5)=P(1,4)+P(2,3)+P(3,2)+P(4,1)=436=19
P(X=6)=P(1,5)+P(2,4)+P(3,3)+P(4,2)+P(5,1)=536
P(X=7)=P(1,6)+P(2,5)+P(3,4)+P(4,3)+P(5,2)+P(6,1)=636=16
P(X=8)=P(2,6)+P(3,5)+P(4,4)+P(5,3)+P(6,2)=536
P(X=9)=P(3,6)+P(4,5)+P(5,4)+P(6,3)=436=19
P(X=10)=P(4,6)+P(5,5)+P(6,4)=336=112
P(X=11)=P(5,6)+P(6,5)=236=118
P(X=12)=P(6,6)=136
Therefore, the required probability distribution is as follows.
Then, E(X)=XiP(Xi)
=2×136+3×118+4×112+5×19+6×536+7×16+8×536+9×19+10×112+11×118+12×136
=118+16+13+59+56+76+109+1+56+1118+13
=7
E(X2)=X2iP(Xi)
=4×136+9×118+16×112+25×19+36×536+49×16+64×536+81×19+100×112+121×118+144×136
=19+12+43+259+5+496+809+9+253+12118+4
=98718=3296=54.833
Then, Var(X)=E(X2)[E(X)]2
=54.833(7)2
=54.83349
=5.833
Standard deviation =Var(X)
=5.833
=2.415

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon