Let [x] denotes the greatest integer less than or equal to x. If f(x)=[xsinπx], then f(x) is?
Let f(x)=x(−1)[1x].x≠0, where [x] denotes the greatest integer less than or equal to x. then limx→0f(x)
If [.] denotes greatest integer function and f(x) = [x] {sinπ[x+1]+sinπ[x+1]1+[x]}, then