As, A and B are independent events.
So, P(BA)=P(B)
P(A∩B)=P(A)⋅P(B)
Let number of elements in A=a and number of elements in B=b [∵a>b≥1]
and number of elements in A∩B=z.
P(A)=n(A)n(S)=a6
P(B)=n(B)n(S)=b6
P(A∩B)=n(A∩B)n(S)=z6
z6=a6⋅b6⇒6z=a⋅b
Now case 1: if z=1
a=6,b=1⇒6C6×6C1=6
a=3,b=2⇒6C3×3C1×3C1=180
case 2: if z=2
a=6,b=2⇒6C6×6C2=15
a=4,b=3⇒6C4×4C2×2C1=180
case 3: if z=3
a=6,b=3⇒6C6×6C3=20
case 4: if z=4
a=6,b=4⇒6C6×6C4=15
case 5: if z=5
a=6,b=5⇒6C6×6C5=6
Hence number of ordered pairs (A,B)=6+180+20+15+180+15+6=422.