Let, X be the numbers on two dice.
Since pair of dice are thrown.
So, X can be 2,3,4,5,6,7,8,9,10,11,12.
Consider X be the difference between the number, draw a table for the different sample space:
X | Events | Number of Outcomes | P( X ) |
2 | ( 1,1 ) | 1 | 1 36 |
3 | ( 1,2 ),( 2,1 ) | 2 | 2 36 |
4 | ( 1,3 ),( 2,2 ),( 3,1 ) | 3 | 3 36 |
5 | ( 1,4 ),( 2,3 ),( 3,2 ),( 4,1 ) | 4 | 4 36 |
6 | ( 1,5 ),( 2,4 ),( 3,3 ),( 4,2 ),( 5,1 ) | 5 | 5 36 |
7 | ( 1,6 ),( 2,5 ),( 3,4 ),( 4,3 ),( 5,2 ),( 6,1 ) | 6 | 6 36 |
8 | ( 2,6 ),( 3,5 ),( 4,4 ),( 5,3 ),( 6,2 ) | 5 | 5 36 |
9 | ( 3,6 ),( 4,5 )( 5,4 ),( 6,3 ) | 4 | 4 36 |
10 | ( 4,6 ),( 5,5 ),( 6,4 ) | 3 | 3 36 |
11 | ( 5,6 ),( 6,5 ) | 2 | 2 36 |
12 | ( 6,6 ) | 1 | 1 36 |
So the probability distribution is,
X | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
P( X ) | 1 36 | 2 36 | 3 36 | 4 36 | 5 36 | 6 36 | 5 36 | 4 36 | 3 36 | 2 36 | 1 36 |
Calculate the value of variance,
Var( X )=E( X 2 )− [ E( X ) ] 2 (1)
Therefore, the mean is given by,
E( X )= ∑ i=1 n X i P i =( 2× 1 36 )+( 3× 2 36 )+( 4× 3 36 )+( 5× 4 36 )+( 6× 5 36 )+( 7× 6 36 ) +( 8× 5 36 )+( 9× 4 36 )+( 10× 3 36 )+( 11× 2 36 )+( 12× 1 36 ) = 252 36 =7
Calculate the value of E( X 2 ),
E( X 2 )= ∑ i=1 n X i 2 P i =( 2 2 × 1 36 )+( 3 2 × 2 36 )+( 4 2 × 3 36 )+( 5 2 × 4 36 )+( 6 2 × 5 36 )+( 7 2 × 6 36 ) +( 8 2 × 5 36 )+( 9 2 × 4 36 )+( 10 2 × 3 36 )+( 11 2 × 2 36 )+( 12 2 × 1 36 ) = 1974 36 = 329 6
Substitute the values in equation (1),
Var( X )=E( X 2 )− [ E( X ) ] 2 = 329 6 − ( 7 ) 2 =5.833
And standard deviation σ x is,
σ x = Var( x ) = 5.833 =2.415
Thus, the variance is 5.833 and standard deviation is 2.415.