Let x=cost∫0(z2−1)cos2zdz and y=sin2t∫0z2(sin2√1−z)dz,t∈(0,π2), then dydx is equal to
A
sin22t⋅tan2t
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
sint⋅sin2t⋅tan2(cost)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
cost⋅sin2t⋅tan(cost)⋅cot(cost)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
sin2t⋅sin2t⋅cot2(cost)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Bsint⋅sin2t⋅tan2(cost) Given : x=cost∫0(z2−1)cos2zdz
differentiating both sides w.r.t. t, ⇒dxdt=(cos2z−1)cos2(cost)⋅(−sint)⇒dxdt=sin3t⋅cos2(cost)
and y=sin2t∫0z2(sin2√(1−z))dz
differentiating both sides w.r.t. t, ⇒dydt=sin4t⋅(sin2√1−sin2t)⋅(2sintcost)⇒dydt=2sin5tcostsin2(cost)
So, dydx=dydt⋅dtdx=sint⋅sin2t⋅tan2(cost)