wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let x=f′′(t)cost+f(t)sint and y=f′′(t)sint+f(t)cost, then [(dxdt)2+(dydt)2]1/2dt equals

A
f(t)+f′′(t)+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
f′′(t)+f′′′(t)+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
f(t)+f′′(t)+c
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
f(t)f′′(t)+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C f(t)+f′′(t)+c
dxdt=f′′′(t)costf′′(t)sint+f′′(t)sint+f(t)cost
dxdt=[f′′′(t)+f(t)]cost

dydt=f′′′(t)sintf′′(t)cost+f′′(t)costf(t)sint
dydt=[f′′′(t)+f(t)]sint

[(dxdt)2+(dydt)2]1/2
=[(f′′′(t)+f(t))2 (cos2t+sin2t)]1/2
=f′′′(t)+f(t)
[(dxdt)2+(dydt)2]1/2dt=f′′(t)+f(t)+c

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration as Anti-Derivative
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon