wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let X=((10C1)2+2(10C2)2+3(10C3)2)+...+10(10C10)2), where 10Cr, r{1,2,...,10} denote binomial coefficients. Then, the value of 11430X is

Open in App
Solution

X=nr=0r(nCr)2 ; n=10,
X=nr=0nrr(nCr)(n1Cr1) ; n=10,
X=nnr=0(nCnr)(n1Cr1) ; n=10,
X=n(2n1Cn1) ; n=10,
X=1019C9
X1430=1019C91430=646



Alternate solution:
X=((10C1)2+2(10C2)2+3(10C3)2)+...+10(10C10)2)
It can be rewritten as,
X=0(10C0)2+1(10C1)2+2(10C2)2+...+10(10C10)2X=10(10C10)2+9(10C9)2+8(10C8)2+...+0(10C0)22X=10[(10C0)2+(10C1)2+(10C2)2++(10C10)2]X=5[20C10]X1430=646

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon