wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let x=my+c is normal to x2=4y. If k2+mk+m=0 is satisfies by only one real value of k, then value(s) of c is/are

A
0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
72
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
72
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
64
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct options are
A 0
B 72
Given parabola is x2=4y and normal is x=my+c
k2+mk+m=0D=0m24m=0m=0,4
When m=0, the equation of normal becomes
x=c
This is normal only when c=0
When m=4, then equation of normal becomes
x=4y+c(1)
Slope of tangent is 4
Now, differentiating the equation of parabola x2=4y
2x=4dydxm=dydx=x2=4x=8y=16
Now, putting (8,16) in equation (1), we get
c=72

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon