Let Xn={z=x+iy:|z|2≤1n} for all integers n≥1. Then, ∞⋂n=1Xn is
A
A singleton set
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
Not a finite set
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
An empty set
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
A finite set with more than one element
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is D A singleton set Given, Xn={z=x+iy:|z|2≤1n} ={x2+y2≤1n} ∴X1={x2+y2≤1} X2={x2+y2≤12} X3={x2+y2≤13} ............................................. ............................................. ............................................. X∞={x2+y2≤0} ∴⋂∞n=1Xn=X1∩X2∩X3∩⋯∩X∞ ={x2+y2=0} Hence, ⋂∞n=1Xn is a singleton set.