The correct option is D 9130
y=x4−2x3+x2+3
dydx=4x3−6x2+2x
For maxima or minima,
dydx=0
⇒2x(2x2−3x+1)=0
⇒2x(x−1)(2x−1)=0
⇒x=0,1,12
Now, d2ydx2=12x2−12x+2
At x=0, d2ydx2>0
So, x=0 is point of minima.
At x=12 ,d2ydx2<0
So, x=12 is point of maxima.
At x=1, d2ydx2>0
So, x=1 is point of minima.
Hence, x1=0 and x2=1
Required area =∫10ydx
=∫10(x4−2x3+x2+3)dx
=[x55−x42+x33+3x]10
=[15−12+13+3]
=9130sq. units