wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

Let X=xN:1x17 and Y=ax+b:xXanda,bR,a>0. If mean and variance of elements of Y are17 and 216 respectively then a+bis equal to:


A

-27

No worries! We‘ve got your back. Try BYJU‘S free classes today!
B

7

No worries! We‘ve got your back. Try BYJU‘S free classes today!
C

-7

Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D

9

No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C

-7


Explanation for correct answer:

Step-1 Mean of Y:

Given, X=xN:1x17,X=1,2,3,...,17

Y=ax+b:xXanda,bR,a>0

Mean of elements in Y=E(Y)=17

i-117yi=117i-117axi+b=117ai-117xi+b1i-117=117(1+2+3+...+17)a+17b[1i=1n=n]=11717×182a+17b[1+2+...+n=n(n+1)2]=17179a+b

9a+b=17(i)

Step-2 : Varinace of Y:

A variance of the elements in

Y=E(Y2)-EY2=216

E(Y2)-172=216i=117yi217=216+289i=117yi2=505×17i=117axi+b2=8585i=117axi2+2abi=117xi+b2i=117=8585

a2(12+22+...+172)+2ab(1+2+...+17)+17b2=8585[1i=1n=n]

Using these formula12+22+...+n2=n(n+1)(2n+1)6;1+2+...+n=n(n+1)2

we get,

a2(17×18×356)+2ab(17×182)+17b2=17×50517105a2+18ab+b2=505×17105a2+18ab+b2=505(ii)

Solving equations (i) and (ii) we get

81a2+18ab+b2+24a2=5059a+b2+24a2=505172+24a2=50524a2=505-289a2=21624a2=9a=3

Substituting a=3 in equation (i)

9×3+b=1727+b=17b=17-27=-10

Therefore,a+b=+3-10=-7

Hence, the correct answer is option (C).


flag
Suggest Corrections
thumbs-up
9
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Measures of Central Tendency
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon