As sin−1(ax)+cos−1y+cos−1(bxy)=π2
A) For a=1,b=0
sin−1x+cos−1y+cos−10=π2⇒sin−1x+cos−1y=0⇒sin−1x=−cos−1y=−sin−1√1−y2⇒x=−√1−y2⇒x2=1−y2⇒x2+y2=1
B) For a=1,b=1
sin−1x+cos−1y+cos−1xy=π2⇒cos−1xy=π2−sin−1x−cos−1y=cos−1x−cos−1y⇒cos−1xy=cos−1(xy+√1−x2√1−y2)⇒xy=xy+√1−x2√1−y2⇒(1−x2)(1−y2)=0
C) For a=1,b=2
sin−1x+cos−1y+cos−12xy=π2⇒cos−1(2xy)=cos−1(xy+√1−x2√1−y2)⇒xy=√1−x2√1−y2⇒x2y2=1−x2−y2+x2y2⇒x2+y2=1
D) For a=2,b=2
sin−12x+cos−1y+cos−12xy=π2⇒cos−1(2xy)=sin−1y−sin−1(2x)⇒cos−1(2xy)=cos−1(√1−y2√1−4x2+2xy)⇒√1−y2√1−4x2=0⇒(4x2−1)(y2−1)=0