The correct option is C The number of ordered pairs (z,x) is 4.
(4+sin4x)(2+cot2y)(1+sin4z)≤12sin2z
Dividing both sides by sin2z, we get
(4+sin4x)(2+cot2y)(sin2z+cosec2 z)≤12 ⋯(1)
4+sin4x≥3, 2+cot2y≥2 and sin2z+cosec2 z≥2
∴(4+sin4x)(2+cot2y)(sin2z+cosec2 z)≥12
So, eqn. (1) is true only when
4+sin4x=3, 2+cot2y=2 and sin2z+cosec2 z=2
⇒sin4x=−1, cot2y=0 and sin2z=1
⇒x∈{3π8,7π8,11π8,15π8}, y∈{π2,3π2} and z∈{π2,3π2}