The correct option is B I, II, IV only
(I) x3+y3+z3=3xyz
⇒x3+y3+z3−3xyz=0
⇒(x+y+z)(x2+y2+z2−xy−yz−zx)=0
⇒12(x+y+z)(2x2+2y2+2z2−2xy−2yz−2zx)=0
⇒12(x+y+z)[(x−y)2+(y−z)2+(z−x)2]=0
Since x+y+z≠0,
(x−y)2+(y−z)2+(z−x)2=0
⇒x=y=z
Alternate: AM ≥ GM
⇒x3+y3+z33≥3√x3y3z3
⇒x3+y3+z3≥3xyz
But, if x3+y3+z3=3xyz
⇒x=y=z [∵AM=GM]
(II) x3+y2z+yz23≥3√x3y2zyz2
⇒x3+y2z+yz2≥3xyz
Then, x3+y2z+yz2=3xyz ⇒x=y=z
(III) Suppose x3+y2z+z2x=3xyz ⋯(1)x3+y2z2+y2z2+z2x4≥4√x3y2zy2zz2x4
⇒3xyz4≥xyz√2 [From (1)]
Therefore, x≠y≠z
(IV) x+y+z3≥3√xyz
⇒(x+y+z)3≥27xyz
Then, (x+y+z)3=27xyz ⇒x=y=z