Let xk+yk=ak, a,k>0 and dydx+yx13=0, then k is
13
32
23
43
Explanation for the correct option:
Determine the value of k
Let dydx+yx13=0→(i)
Given, xk+yk=ak
Differentiate the equation with respect to x, we get
⇒kxk-1+kyk-1dydx=0⇒kxk-1=-kyk-1dydx⇒dydx=-xk-1yk-1⇒dydx=-yx1-k∵xy=yx-1⇒dydx+yx1-k=0→(ii)
Equating equation (i)and(ii)
⇒dydx+yx13=dydx+yx1-k⇒yx13=yx1-k⇒1-k=13⇒k=23
Hence, option (C) is the correct answer