The correct option is
A cos−1(√5−12)Let the angle
∠BOY be
θ (as shown in the figure), when the inradius of
△AOB is maximum.
We know that, area of triangle is A=12base×height=inradius×semi-perimeter
Height of △AOB=Rcos(90−θ)=Rsinθ
Base is AB=2Rsin(90−θ)=2Rcosθ
Area of △AOB=12Rsinθ×2Rcosθ=R2sinθcosθ
Semi-perimeter s=12(R+R+2Rcosθ)=R(1+cosθ)
Thus, Inradius r=Δs=R2sinθcosθR(1+cosθ)
If inradius is maximum, then drdθ=0
⇒(1+cosθ)(cos2θ−sin2θ)−sinθcosθ(−sinθ)(1+cosθ)2=0
⇒(1+cosθ)(2cos2θ−1)+cosθ(1−cos2θ)=0
Let cosθ=C
Then, (1+C)(2C2−1)+C(1−C2)=0⇒C3+2C2−1=0
C=−1,√5−12,−√5+12
Thus, cosθ=√5−12