Let {y} and [y] denote fractional part function and greatest integer function respectively.
If f(x)=sin−1{[3x+2]−{3x+(x−{2x})}} for x∈(0,π12) and (g∘f)(x)=x for all x∈(0,π12), then g′(π6) is equal to
A
√38
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
−14
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
18
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
−√34
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D−√34 f(x)=sin−1{[3x+2]−{3x+(x−{2x})}}
Since x∈(0,π12), ⇒2x∈(0,π6) and 3x∈(0,π4) ∴{2x}=2x and {3x}=3x
We know {x+n}={x} for n∈Z ∴f(x)=sin−1{−{3x+(x−2x)}}f(x)=sin−1{−{3x−x}}=sin−1{−2x}=sin−1(1−{2x})=sin−1(1−2x)
Given that (g∘f)(x)=x for all x∈(0,π12)
It means g(x)=f−1(x) f(x)=sin−1(1−2x)
Let y=sin−1(1−2x)
Then x=1−siny2=f−1(y) ⇒g(x)=f−1(x)=1−sinx2⇒g′(x)=−cosx2⇒g′(π6)=−√34