wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let y=y(x)be the solution of the differential equation dydx=(y+1)(y+1)ex22-x,0<x<2.1, with y(2)=0. Then the value of dydx atx=1 is equal to:


A

[e5/2][1+e2]2

No worries! We‘ve got your back. Try BYJU‘S free classes today!
B

[5e1/2][1+e2]2

No worries! We‘ve got your back. Try BYJU‘S free classes today!
C

-2e2[1+e2]2

No worries! We‘ve got your back. Try BYJU‘S free classes today!
D

-e3/2[1+e2]2

Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is D

-e3/2[1+e2]2


Explanation for the correct option:

Given: dydx/dx=(y+1)(y+1)ex22-x,0<x<2.1,

Replace y+1=Y

dydx=dYdx

dYdx=YYex22-x

dYdx=Y2ex22-xYdYdx+xY=Y2ex221Y2dYdx+xY=ex22

Let k=-1y

then dkdx=1Y2dYdx

dkdx-kx=ex2/2

Find the integration factor

I.F=e-xdx=e-x2/2

ke-x2/2=e-x2/2ex2/2dxke-x2/2=1dxke-x2/2=x+ck=x+cex2/2

Now put k=-1y+1Y=y+1

-1y+1=x+cex2/2....(i)

Since y(2)=0, x=2,y=0

-10+1=2+ce22/2-1=2+ce2-1=2e2+ce2ce2=-1-2e2c=-1e2-2e2e2c=-1e2-2

Put c=-2-1e2 in equation (i)

-1y+1=x+-2-1e2ex2/2-1y+1=x-2e2-1e2ex2/2-1y+1=xe2-2e2-1e2ex2/2y+1=e2xe2-2e2-1-1ex2/2dydxx=1=-e2e2-2e2-11e1/2=-e2-1/22e2-1=-e3/21+e22

Therefore, dydx atx=1 is equal to -e3/21+e22

Hence, option (D) is the correct answer.


flag
Suggest Corrections
thumbs-up
8
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Methods of Solving First Order, First Degree Differential Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon