f(x)=[x2+x+1x2+1]+[4x2+x+22x2+1]+[9x2+x+33x2+1]+⋯+[n2x2+x+nnx2+1]=[1+xx2+1]+[2+x2x2+1]+[3+x3x2+1]+⋯+[n+xnx2+1]=1+2+⋯+n+[xx2+1]+[x2x2+1]+[x3x2+1]+⋯+[xnx2+1]
For x>0,
xnx2+1∈(0,1)
∴[xx2+1]=[x2x2+1]=⋯=[xnx2+1]=0
f(x)=n(n+1)2
Now,
limn→∞⎛⎜
⎜
⎜⎝f(x)−n(f(x))2−n3(n+2)4⎞⎟
⎟
⎟⎠=limn→∞⎛⎜
⎜
⎜⎝n(n+1)2−nn2(n+1)24−n3(n+2)4⎞⎟
⎟
⎟⎠=2limn→∞(n(n−1)n2)=2limn→∞(1−1n)=2