wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let [y] denote the greatest integer less than or equal to y. If f:(0,)N is defined by f(x)=[x2+x+1x2+1]+[4x2+x+22x2+1]+[9x2+x+33x2+1]++[n2x2+x+nnx2+1] for nN, then the value of limn⎜ ⎜ ⎜f(x)n(f(x))2n3(n+2)4⎟ ⎟ ⎟ is

Open in App
Solution

f(x)=[x2+x+1x2+1]+[4x2+x+22x2+1]+[9x2+x+33x2+1]++[n2x2+x+nnx2+1]=[1+xx2+1]+[2+x2x2+1]+[3+x3x2+1]++[n+xnx2+1]=1+2++n+[xx2+1]+[x2x2+1]+[x3x2+1]++[xnx2+1]

For x>0,
xnx2+1(0,1)
[xx2+1]=[x2x2+1]==[xnx2+1]=0
f(x)=n(n+1)2

Now,
limn⎜ ⎜ ⎜f(x)n(f(x))2n3(n+2)4⎟ ⎟ ⎟=limn⎜ ⎜ ⎜n(n+1)2nn2(n+1)24n3(n+2)4⎟ ⎟ ⎟=2limn(n(n1)n2)=2limn(11n)=2

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Crop Production Improvement
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon