wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let y=6x345x2+108x+22x315x2+36x+1
x(0,10)
Maximum value of y

A
3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
8629
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
8229
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B 8629
The given information is:

y=6x345x2+108x+22x315x2+36x+1

y=(18x290x+108)(2x315x2+36x+1)(6x230x+36)(6x345x2+108x+2)(2x315x2+36x+1)2

y=18(x25x+6)(2x315x2+36x+1)6(x25x+6)(6x345x2+108x+2)(2x315x2+36x+1)2

y=6(x25x+6)(6x345x2108x+36x3+45x2108x2)(2x315x2+36x+1)2

y=6(x25x+6)(2x315x2+36x+1)2

Now the extremum points are where y=0

6(x25x+6)(2x315x2+36x+1)2=0

6(x25x+6)=0

The extremum points are x=2 and x=3.

Again differentiating w.r.t to x we get,

y′′=6×(2x5)(2x315x2+36x+1)22(2x315x2+36x+1)(6x230x+36)(x25x+6)(2x315x2+36x+1)4

y′′=6×(2x5)(2x315x2+36x+1)212(2x315x2+36x+1)(x25x+6)(x25x+6)(2x315x2+36x+1)4

Finding the value of y′′ at the extremum points we get,

y′′(2)=6×(1)(29)212×29×0(29)4

y′′(2)=6(29)2

y′′(2)<0. Hence the point x=2 is a point of maxima.

y′′(3)=6×(1)(28)212×28×0(28)4

y′′(3)=6(28)2

y′′(3)>0 . Hence the point x=3 is a point of minima.

Therefore the maximum value of the function is y(2).

y(2)=6.2345.22+108.2+22.2315.22+36.2+1

y(2)=48180+216+22.2315.22+36.2+1

y(2)=8629

Thus the maximum value of the function is 8629. .....Answer


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Extrema
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon