The correct option is
B 8629The given information is:
y=6x3−45x2+108x+22x3−15x2+36x+1
⇒y′=(18x2−90x+108)(2x3−15x2+36x+1)−(6x2−30x+36)(6x3−45x2+108x+2)(2x3−15x2+36x+1)2
⇒y′=18(x2−5x+6)(2x3−15x2+36x+1)−6(x2−5x+6)(6x3−45x2+108x+2)(2x3−15x2+36x+1)2
⇒y′=6(x2−5x+6)(6x3−45x2−108x+3−6x3+45x2−108x−2)(2x3−15x2+36x+1)2
⇒y′=6(x2−5x+6)(2x3−15x2+36x+1)2
Now the extremum points are where y′=0
⇒6(x2−5x+6)(2x3−15x2+36x+1)2=0
⇒6(x2−5x+6)=0
The extremum points are x=2 and x=3.
Again differentiating w.r.t to x we get,
⇒y′′=6×(2x−5)(2x3−15x2+36x+1)2−2(2x3−15x2+36x+1)(6x2−30x+36)(x2−5x+6)(2x3−15x2+36x+1)4
⇒y′′=6×(2x−5)(2x3−15x2+36x+1)2−12(2x3−15x2+36x+1)(x2−5x+6)(x2−5x+6)(2x3−15x2+36x+1)4
Finding the value of y′′ at the extremum points we get,
⇒y′′(2)=6×(−1)(29)2−12×29×0(29)4
⇒y′′(2)=−6(29)2
⇒y′′(2)<0. Hence the point x=2 is a point of maxima.
⇒y′′(3)=6×(1)(28)2−12×28×0(28)4
⇒y′′(3)=6(28)2
⇒y′′(3)>0 . Hence the point x=3 is a point of minima.
Therefore the maximum value of the function is y(2).
⇒y(2)=6.23−45.22+108.2+22.23−15.22+36.2+1
⇒y(2)=48−180+216+22.23−15.22+36.2+1
⇒y(2)=8629
Thus the maximum value of the function is 8629. .....Answer