wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let y=exsinx3+(tanx)x find dydx (IIT-JEE, 1981)

Open in App
Solution

We are given that y=exsinx3+(tanx)x

u+v

u=exsinx3 and v=(tanx)x

now dudx=exsinx3ddx(xsinx3)

=exsinx3[3x3×cosx3+sinx3]

v=(tanx)x

Differentiating w.r.t. x, we get 1vdvdx=x1tanxsec2x+logtanx

dvdx=(tanx)x(2xsin2x+logtanx)

Hence, dydx=exsinx3(sinx3+3x3cosx3)+(tanx)x(2xsin2x+logtanx)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Substitution Method to Remove Indeterminate Form
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon