x3−(1−a)x2−2ax+a=0
Roots of above equation are 1, f(α), f(1α)
1+f(α)+f(1α)=1−a …(1)
1⋅f(α)⋅f(1α)=−a …(2)
From (1) and (2),
f(α)⋅f(1α)=f(α)+f(1α)⇒f(x)=1±xnf′(x)=±nxn−1f′′(x)=±n(n−1)xn−2f′′′(x)=±n(n−1(n−2)xn−3⇒f′′′(2)=±n(n−1)(n−2)2n−3=−6
n=3 and negative sign is to be taken.
Again, f′′′′(x)=±n(n−1)(n−2)(n−3)xn−4
f′′′′(2)=0⇒n=0,1,2,3
∴n=3
Now, f(x)=1−x3
f(2)=−7, f(12)=78
From (2), a=498