The correct option is D e∫0f(x)dx>1∫0f(x)dx
x2dydx=y2e1/x
⇒dyy2=e1/xx2dx
Integrating both sides, we get
−1y=∫e1/xx2dx+C
Let 1x=t
⇒−1x2dx=dt
∴−1y=−∫etdt+C
⇒1y=e1/x−C
⇒y=1e1/x−C
Since limx→0−f(x)=1,
∴limx→0−1e1/x−C=1
⇒limh→01e−1/h−C=1
⇒10−C=1⇒C=−1
∴y=1e1/x+1
dydx=−e1/x(1+e1/x)2⋅(−1x2)
⇒dydx=e1/xx2(1+e1/x)2
∴dydx>0 ∀ x∈R−{0}
limx→±∞1e1/x+1=12
limx→0−f(x)=1
and limx→0+1e1/x+1=limh→01e1/h+1=0
∴ Range of f(x) is (0,1)−{12}
As f(x)>0,
so, e∫0f(x)dx>1∫0f(x)dx