sin−1(sin8)=sin−1(sin(3π−8))=3π−8
tan−1(tan10)=tan−1(tan(10−3π))=10−3π
cos−1(cos12)=cos−1(cos(4π−12))=4π−12
sec−1(sec9)=sec−1(sec(9−2π))=9−2π
cot−1(cot6)=cot−1(cot(6−π))=6−π
cosec−1(cosec 7)=cosec −1(cosec(7−2π))=7−2π
Now, y=(3π−8)+(3π−10)+(4π−12)+(2π−9)+(−π+6)+(2π−7)
⇒y=13π−40=aπ+b
⇒a=13 and b=−40
∴a−b=13+40=53