1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Physics
Antiderivative
Let y=sin-1...
Question
Let
y
=
(
sin
−
1
x
)
3
+
(
cos
−
1
x
)
3
then
A
min
y
=
π
3
8
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
min
y
=
π
3
32
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
max
y
=
7
π
3
8
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
max
y
=
7
π
3
32
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct options are
B
max
y
=
7
π
3
8
C
min
y
=
π
3
32
y
=
(
sin
−
1
x
)
3
+
(
cos
−
1
x
)
3
=
(
sin
−
1
x
+
cos
−
1
x
)
3
−
3
sin
−
1
x
cos
−
1
x
(
sin
−
1
x
+
cos
−
1
x
)
=
π
3
2
3
−
3
sin
−
1
x
cos
−
1
x
(
π
2
)
(
∵
sin
−
1
x
+
cos
−
1
x
=
π
2
)
=
π
3
8
−
3
sin
−
1
x
cos
−
1
x
(
π
2
)
=
π
3
8
−
3
π
2
sin
−
1
x
(
π
2
−
sin
−
1
x
)
=
3
π
2
(
sin
−
1
x
)
2
−
3
π
2
4
sin
−
1
x
+
π
3
8
=
3
π
2
(
(
sin
−
1
x
)
2
−
π
2
sin
−
1
x
+
π
2
12
)
=
3
π
2
(
(
sin
−
1
x
−
π
4
)
2
+
π
2
48
)
For minimum value, put
sin
−
1
x
=
π
4
(to make the square term zero)
We get
y
m
i
n
.
=
π
3
32
Similarly for maximum value we put
sin
−
1
x
=
−
π
2
(to make the square term maximum)
We get
y
m
a
x
.
=
7
π
3
8
Suggest Corrections
0
Similar questions
Q.
Assertion :
s
i
n
−
1
t
a
n
(
t
a
n
−
1
x
+
t
a
n
−
1
(
2
−
x
)
)
=
π
/
2
has no non-zero integral solution. Reason: The greatest and least value of
(
s
i
n
−
1
x
)
3
+
(
c
o
s
−
1
x
)
3
are respectively
7
π
3
/
8
and
π
3
/
32
.
Q.
What is the real values of x which satisfy function
:
(
sin
−
1
x
)
3
+
(
cos
−
1
x
)
3
(
tan
−
1
x
+
cot
−
1
x
)
3
=
7
Q.
Statement I : The equation
(
s
i
n
−
1
x
)
3
+
(
c
o
s
−
1
x
)
3
−
a
π
3
=
0
has a solution for all
a
⩾
1
32
.
Statement II : For any
x
ϵ
R
,
s
i
n
−
1
x
+
c
o
s
−
1
x
=
π
2
and
0
≤
(
s
i
n
−
1
x
−
π
4
)
2
≤
9
π
2
16
.
Q.
Inverse circular functions,Principal values of
s
i
n
−
1
x
,
c
o
s
−
1
x
,
t
a
n
−
1
x
.
t
a
n
−
1
x
+
t
a
n
−
1
y
=
t
a
n
−
1
x
+
y
1
−
x
y
,
x
y
<
1
π
+
t
a
n
−
1
x
+
y
1
−
x
y
,
x
y
>
1
.
(a)
s
i
n
−
1
(
3
x
/
5
)
+
s
i
n
−
1
(
4
x
/
5
)
=
s
i
n
−
1
x
(b)
c
o
s
−
1
x
+
s
i
n
−
1
(
1
2
x
)
=
π
6
(c) If
a
≤
t
a
n
−
1
(
1
−
x
1
+
x
)
≤
b
where
0
≤
x
≤
1
then
(
a
,
b
)
=
(a)
(
0
,
π
)
(b)
(
0
,
π
/
4
)
(c)
(
−
π
/
4
,
π
/
4
)
(d)
(
π
/
4
,
π
/
2
)
(d) If
a
≤
(
s
i
n
−
1
x
)
3
+
(
c
o
s
−
1
x
)
3
≤
b
then (a,b) is equal to
(
π
3
32
,
7
π
3
8
)
.
Q.
Greatest value of
(
s
i
n
−
1
x
)
3
+
(
c
o
s
−
1
x
)
3
is :
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Integration
PHYSICS
Watch in App
Explore more
Antiderivative
Standard XII Physics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app