Let y(x) be the solution of the differential equation 2x2dy+(ey−2x)dx=0,x>0. If y(e)=1, then y(1) is equal to
A
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
loge(2e)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
loge(2)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is Dloge(2) dydx=2x−ey2x2 ⇒−e−ydydx+e−yx=12x2⋯(i)
Let e−y=t −e−ydydx=dtdx
Putting this in equation (i) ⇒dtdx+tx=12x2 ⇒dtdx+tx=12x2
This is a first order linear differential equation I.F.=e∫1xdx=elnx=x ⇒t⋅x=∫12x2×xdx+C ⇒t⋅x=∫12xdx+C ⇒xe−y=12lnx+C
We know y(e)=1 ⇒e⋅e−1=12+C⇒C=12 ⇒xe−y=12lnx+12
Now put x=1, ⇒1×e−y=12ln1+12 ⇒e−y=0+12 ⇒−ylne=−ln2 ⇒y=ln2