The correct option is A 2
Given differential equation may be written as,
dydx+yxlogx=2
Clearly this is of the form, dydx+Py=Q
So, I.F. =e∫pdx=e∫1xlogxdx=eln(lnx)=lnx
⇒y(I.F.)=∫Q(x)×I.F.dx
⇒y(lnx)=∫2×lnxdx
⇒y(lnx)=2(xlnx−x)+c
Put x=1 we get, c=2
y(e)−0=2⇒y(e)=2