xdy–ydx=√(x2−y2)dx⇒xdydx−y=√(x2−y2)⇒dydx−yx=√1−(y2x2)2
Now, y=vx⇒dydx=v+xdvdx
⇒v+xdvdx−v=√1−v2⇒dv√1−v2=dxx⇒sin−1v=ln|x|+C⇒sin−1yx=ln|x|+C
We know y(1)=0
⇒0=C
As x≥1, so
y=xsin(lnx)
Now, the required area
A=eπ∫1xsin(lnx)dx
Let x=et⇒dx=et dt
⇒A=π∫0e2tsint dt
Let
I=∫e2tsint dt⇒I=e2tsint2−12∫e2tcost dt⇒I=e2tsint2−12[e2tcost2+12∫e2tsint dt]⇒I=e2tsint2−e2tcost4−I4⇒I=e2t5(2sint−cost)+C
Where C is arbitrary constant
Therefore,
A=[e2t5(2sint−cost)]π0⇒A=e2π+15⇒α=15, β=15∴10(α+β)=4