CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon
MyQuestionIcon
4
You visited us 4 times! Enjoying our articles? Unlock Full Access!
Question

Let y=y(x) be the solution of the differential equation xdyydx=(x2y2)dx, x1, with y(1)=0. If the area bounded by the line x=1,x=eπ,y=0 and y=y(x) is αe2π+b, then the value of 10(α+β) is equal to

Open in App
Solution

xdyydx=(x2y2)dxxdydxy=(x2y2)dydxyx=1(y2x2)2
Now, y=vxdydx=v+xdvdx
v+xdvdxv=1v2dv1v2=dxxsin1v=ln|x|+Csin1yx=ln|x|+C
We know y(1)=0
0=C
As x1, so
y=xsin(lnx)
Now, the required area
A=eπ1xsin(lnx)dx
Let x=etdx=et dt
A=π0e2tsint dt
Let
I=e2tsint dtI=e2tsint212e2tcost dtI=e2tsint212[e2tcost2+12e2tsint dt]I=e2tsint2e2tcost4I4I=e2t5(2sintcost)+C
Where C is arbitrary constant
Therefore,
A=[e2t5(2sintcost)]π0A=e2π+15α=15, β=1510(α+β)=4

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Equations Reducible to Standard Forms
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon