The correct option is A −√52
y√1−x2=k−x√1−y2
Differentiating w.r.t. x on both the sides, we get
y′√1−x2+y×12√1−x2×(−2x)
=−√1−y2−x×12√1−y2×(−2y)y′
⇒y′√1−x2−xy√1−x2=xy√1−y2y′−√1−y2
Putting x=12, y=−14, we get
y′⎡⎢
⎢
⎢
⎢⎣√32−18√154⎤⎥
⎥
⎥
⎥⎦=18√32−√154
⇒y′[√32−12√15]=14√3−√154
⇒y′[√45−12√15]=1−√454√3
⇒y′∣∣∣x=1/2=−√52