Let y=y(x) be solution of the differential equation loge(dydx)=3x+4y, with y(0)=0. If y(−23loge2)=αloge2, then the value of α is equal to
A
−12
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
−14
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
14
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B−14 Given: ln(dydx)=3x+4y ⇒dydx=e3x+4y ⇒e−4ydy=e3xdx ⇒∫e−4ydy=∫e3xdx ⇒e−4y−4=e3x3+C ∵y(0)=0⇒C=−712 ∴e−4y=73−4e3x3 ⇒e4y=37−4e3x ⇒y=14ln(37−4e3x)
At x=−23ln2, we have y(−23ln2)=14ln(36)=−14ln2 ∴α=−14