wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let y=y(x) be solution of the following differential equation eydydx2eysinx+sinxcos2x=0, y(π2)=0. If y(0)=loge(α+βe2), then 4(α+β) is equal to

Open in App
Solution

eydydx2eysinx+sinxcos2x=0
Let ey=tdtdx2tsinx=sinxcos2x
I.F.=e 2sinxdx=e2cosx
te2cosx=e2cosx(sinxcos2x)dx
Let I=e2cosx(sinxcos2x)dx
Let cosx=usinxdx=du
I=e2uu2du
=u2e2u2ue2udu=u2e2u2ue2u2+e2u4=e2cosx(cos2x2cosx2+14)=14e2cosx(2cos2x2cosx+1)
We get,
e2cosxey=14e2cosx(2cos2x2cosx+1)+C
y(π2)=0C=34
Now, at x=0,
e2ey(0)=e24(22+1)+34
y(0)=ln(14+34e2)
α=14 and β=34

flag
Suggest Corrections
thumbs-up
6
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General and Particular Solutions of a DE
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon