dydx+(2x2+11x+13)(x+1)(x+2)(x+3)y=x+3x+1
I.F=e∫2x2+11x+13(x+1)(x+2)(x+3)dx
=e∫(2x+1+1x+2−1x+3)dx
=e2ln(x+1)+ln(x+2)−ln(x+3)
=eln(x+1)2(x+2)(x+3)
I.F=(x+1)2(x+2)(x+3)
So, curve
y⋅(x+1)2(x+2)(x+3)=∫(x+1)2(x+2)(x+3)⋅(x+3)(x+1)dx+c
⇒ y(x+1)2(x+2)(x+3)=∫(x2+3x+2)dx+c
⇒ y(x+1)2(x+2)(x+3)=x33+3x22+2x+c
∵ Passes through (0,1)⇒c=23
So solution curve is
y(x+1)2(x+2)(x+3)=x33+3x22+2x+23
for x=1⇒y=32