dydx+1x2−1y=√x−1x+1 , x>1
Integrating factor
I.F. =e∫1x2−1dx=e12ln∣∣
∣∣x−1x+1∣∣
∣∣
=√x−1x+1
Solution of differential equation
y√x−1x+1=∫x−1x+1dx=∫(1−2x+1)dx
y√x−1x+1=x−2 ln|x+1|+C
Curve passes through (2,√13)
1√3×1√3=2−2 ln 3+C
C=2 ln 3−53
Nowy√x−1x+1=x−2 ln|x+1|+2 ln 3−53
y(8)×√73=8−2 ln 9+2 ln 3−53
√7⋅y(8)=19−6 ln 3