Let y=y(x) be the solution of the differential equation dydx=2(y+2sinx−5)x−2cosx such that y(0)=7. Then y(π) is equal to
A
eπ2+5
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
2eπ2+5
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
7eπ2+5
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
3eπ2+5
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B2eπ2+5 Given: dydx=2(y+2sinx−5)x−2cosx ⇒dydx−2xy=4xsinx−2cosx−10x I.F.=e∫−2xdx=e−x2
Now, the general solution: y⋅e−x2=∫e−x2(4xsinx−2cosx−10x)dx+C ⇒ye−x2=4∫e−x2(x)(sinx)dx−2∫(cosx)e−x2dx+5∫(−2xe−x2)dx+C ⇒ye−x2=−2sinx⋅e−x2+5e−x2+C
Put x=0⇒7=0+5+C ⇒C=2 ∴ye−x2=−2sinx⋅e−x2+5e−x2+2 ⇒y=−2sinx+5+2ex2
Put x=π⇒y=5+2eπ2